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Introduction to ‘‘Towards the Ultimate Conservative Difference
Scheme. V. A Second-Order Sequel to Godunov’s Method’’

BRAM VAN LEER’S QUEST FOR PERFECTION B. Van Leer initiated a fundamental analysis of the main
properties needing to be satisfied by the ‘‘ultimate’’ numer-

The paper reproduced in this special issue is the fifth ical schemes, namely monotonicity and conservation cou-
and last of a series, started in 1973 (Refs. [1] to [5]), with pled to second- or higher order accuracy. Within this con-
the general objective of a march ‘‘Towards the Ultimate text, the development of Bram’s work over the six-year
Conservative Difference Scheme.’’ This is a unique exam- duration of his ‘‘ultimate’’ series is remarkable. In a free
ple of a persistent pursuit, spanning five or six years, of a and creative spirit he undertook a return to the fundamen-
clearly stated objective, although the outcome was not tals, selecting the notion of monotonicity as the basis of
initially known to the author, which led to the foundation the foundation of numerical schemes. Initiating the analy-
of modern CFD methodology. In commenting on this fifth sis with the LW and Fromm schemes applied to the linear
‘‘installment’’ it is difficult to dissociate it from the four one-dimensional convection equation [1, 2], he introduced
previous ones, as they form a consistent set, although the in the two initial papers the fundamental concept of slope
first four papers of the series deal essentially with linear limiters. Although a similar concept had been introduced,
convection. When B. Van Leer started this work, in the at nearly the same time, by Boris and Book [12], Van
early seventies, the development of numerical schemes for Leer’s approach is distinctive in separating the update pro-
the compressible flow equations had already reached an cedure into an interpolation or reconstruction step fol-
advanced stage with the availability of the second-order lowed by an evolution step. This separation greatly clarifies
centered scheme of Lax and Wendroff (LW) [6] and its the correct treatment of systems of equations on the basis
two-step variant introduced by MacCormack [7, 8]. The of a scalar analysis. This major contribution established
latter was a major step forward, since it simplified consider- clearly for the first time that the way around the limitations
ably the formulation (avoiding computations of the Jacobi- expressed by Godunov’s Theorem [14], linking monoto-
ans and requiring only flux evaluations) and opened the nicity to first-order accuracy for linear schemes, was to
way to practical applications of the LW scheme, leading introduce nonlinear contributions in the scheme in the
to the first significant computations of two- and three- form of limiters. As these limiters require upstream infor-
dimensional, shock-capturing, inviscid and viscous flows mation, it became clear that the way to the ‘‘ultimate’’
on complex geometries. Actually, the first practical applica- scheme was to look for upwind-biased schemes of at least
tion of the finite volume method [9] was based on MacCor- second-order accuracy. Since the well-known first-order
mack’s scheme. upwind CIR scheme [13] cannot be made conservative

It was clearly recognised at that time that the second- in a straightforward way, Van Leer turned to the largely
order centered LW scheme generated oscillations around ignored work of Godunov [14]. This is another historical
shocks. These were accepted as a ‘‘nuisance’’ which had merit of the fourth and fifth papers of the series, namely
to be filtered out by the addition of higher order dissipation the recognition and extension of Godunov’s fundamental
terms, or artificial viscosity terms, a concept already intro- new approach to numerical methods for hyperbolic conser-
duced by Von Neumann [10] and also analysed by Lax vation laws, characterized by the introduction of physical,
and Wendroff. Based on empirical and intuitive arguments, simple, solutions of the flow equations to the numerical
MacCormack and Paullay [11] introduced a more sophisti- scheme. In the present context, these exact solutions of
cated form for the dissipation terms involving a second the inviscid conservation laws describe the time evolution
difference of the pressure as a detector of high gradients, of an initial, one-dimensional discontinuity, known as the
multiplying second-order differences of the basic variables. Riemann problem. The fourth paper of the series, although
This appeared to be very effective essentially, as is known applied to the one-dimensional linear convection equation,
today from B. Van Leer’s work, because of the nonlinearity sets the basis of modern upwind-biased schemes of second-
introduced hereby. (or third-) order accuracy, monotone and conservative,

Working as an astronomer, with the task of simulating based on piecewise linear, but limited, variations of the
the formation of stars and stellar systems, a task somewhat solutions, coupled to the exact solution of the cell interface

discontinuities, following Godunov’s approach. It also con-isolated from the main pressure of aerospace applications,
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firms the excellent properties of a continuous limiter, based that the question is meaningful, while the improvements
over dimensional split methods obtained with multidimen-on a harmonic average of gradients, known today in the
sional upwinding are significant for first-order schemes,literature as the Van Leer limiter.
but are not yet fully established for general 3D flows atThese developments then culminate in the fifth paper
the level of second-order accuracy. Similar questions canof the series which focuses exclusively on the one- and
be raised for the MHD applications, showing how actualtwo-dimensional equations for compressible gas dynamics.
the work presented and the issues raised in B. Van Leer’sAlthough developed for a Lagrangian formulation, which
paper still are.is not much favoured nowadays, this paper has had pro-

The quest for perfection can never end.found influence on all of the subsequent work related to
upwind schemes. The acronym, MUSCL, of the code devel-
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